This research developed and evaluated an algorithm to link mothers and infants in two US commercial healthcare databases to facilitate observational maternal-infant research.
Abstract:
Background: Administrative healthcare claims databases are used in drug safety research but are limited for investigating the impacts of prenatal exposures on neonatal and pediatric outcomes without mother-infant pair identification. Further, existing algorithms are not transportable across data sources. We developed a transportable mother-infant linkage algorithm and evaluated it in two, large US commercially insured populations.
Methods: We used two US commercial health insurance claims databases during the years 2000 to 2021. Mother-infant links were constructed where persons of female sex 12-55 years of age with a pregnancy episode ending in live birth were associated with a person who was 0 years of age at database entry, who shared a common insurance plan ID, had overlapping insurance coverage time, and whose date of birth was within ±60-days of the mother’s pregnancy episode live birth date. We compared the characteristics of linked vs non-linked mothers and infants to assess similarity.
Results: The algorithm linked 3,477,960 mothers to 4,160,284 infants in the two databases. Linked mothers and linked infants comprised 73.6% of all mothers and 49.1% of all infants, respectively. 94.9% of linked infants’ dates of birth were within ±30-days of the associated mother’s pregnancy episode end dates. Characteristics were largely similar in linked vs. non-linked mothers and infants. Differences included that linked mothers were older, had longer pregnancy episodes, and had greater post-pregnancy observation time than mothers with live births who were not linked. Linked infants had less observation time and greater healthcare utilization than non-linked infants.
Conclusions: We developed a mother-infant linkage algorithm and applied it to two US commercial healthcare claims databases that achieved a high linkage proportion and demonstrated that linked and non-linked mother and infant cohorts were similar. Transparent, reusable algorithms applied to large databases enable large-scale research on exposures during pregnancy and pediatric outcomes with relevance to drug safety. These features suggest studies using this algorithm can produce valid and generalizable evidence to inform clinical, policy, and regulatory decisions.
Key findings:
Below are links for study-related artifacts that have been made available as part of this study: